
TECHNICAL SUPPORT • FEBRUARY 2003

BY STEVE PRYOR
Storage Strategies

Where’s the Data?
Obtaining Information from

the Catalog

‘Know your subject’...every aspiring
writer or speaker has heard this

piece of advice. An understanding of the sub-
ject matter is a requirement for success in any
discipline, including storage management.
The storage administrator must understand
not only what data exists, but must also have
an understanding of the metadata, that is, the
data about the data—where files are stored,
what their characteristics are, who owns
them, when they will expire, and so on.

In enterprise systems, the basic repository
for information about most datasets is the ICF
(Integrated Catalog Facility) Catalog. Prior to
the year 2000, it was possible to store this
information in old-style non-ICF catalogs and
CVOLs, but these have thankfully now disap-
peared. Today’s ICF catalogs are much more
reliable and can contain a vast amount of
information about each dataset, including the
names of its various components, associations
and aliases, as well as such details as stripe-
count, SMS classes and sharing status.

Catalogs also contain the answer to one
of the first questions that the storage
administrator asks when presented with a
problem— where is the dataset? Probably
the most important function of the catalog
is simply to allow the system to locate a file
without the need for the programmer to
specify the volume on which it resides.
Indeed, in a large modern data center, this
would be impossible given the sheer num-
ber of datasets and volumes present. Under
DFSMS, datasets may also reside on differ-
ent volumes or different media (tape vs.
DASD, for example) at various points in
their life cycle. The location and character-
istics of a dataset as recorded in the catalog
are important to both the normal operation
of the system and the storage administra-
tor who is trying to write a report or solve
a problem.

While the format and content of catalogs
has been modified over the years, the basic
tool for getting information out of catalogs
has changed remarkably little. For both
application programmers and storage
administrators, one of the most common
means of obtaining dataset information is a
simple IDCAMS LISTCAT job. LISTCAT
has the advantages of being widely under-
stood and relatively simple to use, and it
provides complete catalog information in
an output format that has remained largely
stable, with only minor changes from release
to release to accommodate new fields in the
catalog records. Many installations have
taken advantage of this fixed-format output
to write LISTCAT post-processors, usually
in REXX or CLIST, to reformat the data to
meet installation needs.

The LISTCAT control statement is a very
simple one for the amount of data it can
return. There are no required parameters for
LISTCAT. The simplest form, specifying
the command with no other operands, will
list every entry in the master catalog.
Usually, a little filtering is desirable, and
adding the CATALOG(catname) parm will
list all of the entries in a particular catalog.
(Under TSO, just those entries with the user’s
high-level qualifier are shown). Another com-
mon requirement is to restrict the information
returned to that which describes particular
types of entries. LISTCAT ALIAS with no
other operands, for example, will list all of
the alias entries in the master catalog.
Similarly, LISTCAT NONVSAM will
show just the entries for non-VSAM
datasets, while LISTCAT CLUSTER will
display the VSAM entries—just the thing
for finding ‘rogue’ user datasets catalogued
in the master catalog.

Often the desired dataset name is known,
and it’s the information about a particular

dataset that’s of interest. In this case, the
ENTRY parameter is used to provide the
dataset name, which might even be the
name of the catalog itself. LISTCAT
ENTRY(catname) CATALOG(catname),
for example, will list the catalog’s own self-
describing entry. In this case the cluster
name will be binary zeroes. This sort of
LISTCAT might be useful in determining
whether a catalog is full or nearly full, as
indicated by the high-allocated and high-
used RBA fields and the number of extents.
(APAR OW54162 also provides a means
of getting a warning when a catalog is run-
ning out of extents, via the new MODIFY
CATALOG, NOTIFYEXTENT command).

Often one is interested in more than just a
single dataset. A certain amount of generic
selection can be performed with the LEVEL
or ENTRIES parms. Specifying LEVEL
implies that the catalog should be searched
for datasets with the specified high-level
qualifier(s), i.e., LEVEL(SYS1.TEST) will
display all entries with those first two qual-
ifiers. A limited amount of dataset name
masking can also be specified in listing
catalog entries—an asterisk can be used as a
placeholder for a single qualifier in the
ENTRIES parameter, and for multiple qual-
ifiers in the LEVEL parameter. The last
qualifier, however, cannot be an asterisk (this
results in a syntax error, and it is implicitly
present, anyway with LEVEL). Thus LIST
NONVSAM ENTRIES(PROD.*.JUNE)
will list all non-VSAM datasets having 3
qualifiers in the name, where the first qual-
ifier is ‘PROD’ and the third, ‘JUNE’. If
LEVEL rather than ENTRIES were speci-
fied, the same selection criteria are used,
except only the first 3 qualifiers of the dataset
are examined, and datasets with names such
as such as ‘PROD.XYX.JUNE.SYS.FOUR’
would also be listed.

©2003 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

TECHNICAL SUPPORT • FEBRUARY 2003

In some cases, the reason for running
LISTCAT is just to get a list of dataset
names; in others, some information beyond
just name is the object of the catalog search.
LISTCAT output is presented in groups, as
obtained from the various ‘sub’ records or
cells in the catalog components (the BCS,
or Basic Catalog Structure of which only
one exists per catalog, and the VVDS, or
VSAM Volume Dataset, which resides on
each DASD volume). For example, specify-
ing LISTCAT ENTRY(somedsn) VOLUME
returns not only the volume serial number
the dataset resides on, but additional infor-
mation from other cells, such as HISTORY
information (ownerid, creation/expiration
dates, and DFSMSdfp release number).
ALL is probably the most commonly spec-
ified parameter, resulting in a formatted
output of all the BCS/VVDS information
for the selected dataset and its associated
aliases, generations, paths, and so on.

The volume serial information returned
from LISTCAT is usually the volume(s)
that the dataset resides on, but for a dataset
that has been migrated by DFSMShsm or
FDRABR, the volume serial number will
be MIGRAT. This differs slightly from the
same information returned by ISPF option
3.4, which will indicate a volume serial
number of MIGRAT1 or MIGRAT2 for a
migrated dataset. This is because
MIGRAT is the actual volume serial num-
ber recorded in the catalog, and ISPF
appends a ‘1’ or a ‘2’ depending upon
whether the DEVTYPE field, also in the
catalog entry, indicates the dataset is on
disk or on tape. Also, for a migrated
VSAM dataset, LISTCAT will indicate
that the dataset is non-VSAM. The dataset
will be recatalogued as a VSAM dataset if
it is recalled.

The volume serial number in the LISTCAT
output for a dataset might also be all aster-
isks (‘******’), indicating that the dataset
was catalogued using a symbolic reference
to the system residence volume, or it may
contain a system symbol such as ‘&SYSR2’.
In these cases, the DEVTYPE field will be
zeroes, since these values are not resolved
until the system actually needs to refer to
the dataset.

LISTCAT is subject to a number of limita-
tions, of course—the only allowable search
criteria are entry name and type, and the
generic search is limited (no partial qualifiers
are allowed, for example). Also, while the
output format changes only infrequently,

each DFSMSdfp release usually requires
annoying modifications to homegrown
LISTCAT output processors.

One way of dealing with these limita-
tions, which has the advantage of costing no
more than LISTCAT itself (i.e., nothing, as
it’s included with the system), is the Catalog
Search Interface. CSI is a documented, sup-
ported interface into the Generic Filter
Locate function of SVC 26. This interface,
which is documented in DFSMS:Managing
Catalogs (SC26-7409), provides much bet-
ter selection criteria than LISTCAT (partial
qualifiers and wildcards can be used), and
can return only the information requested,
eliminating extraneous unwanted data. CSI
is normally invoked from an assembler
language program, but it can be called from
REXX, as shown in some of the samples
available in the SYS1.SAMPLIB library.
(For a more detailed discussion of CSI, see
the May 1998 Storage Strategies column at
www.naspa.com).

Knowledge of the subject matter is
important when embarking on any enter-
prise. When the subject matter is an
installation’s data, an understanding of
the details of both basic tools such as
LISTCAT and more sophisticated mecha-
nisms such as the Catalog Search
Interface can make understanding and
solving problems much easier.

NaSPA member Steve Pryor is a senior software
developer with DTS Software, Inc., a vendor of
enterprise storage management products.
Steve has been involved in software develop-
ment, storage management, and disaster
recovery for more than 20 years. He can be
contacted at pryor@mailatlanta.net.

List all entries in the Master Catalog
LISTCAT

List Alias entries in the Master Catalog
LISTCAT ALIAS

List all entries in a User Catalog
LISTCAT CAT(USER.CATALOG)

List Generation Datasets in a User Catalog
LISTCAT GDG CAT(USER.CATALOG)

List a Catalog Self-Describing Entry
LISTCAT ENTRY(SOME.CATALOG) CAT(SOME.CATALOG) ALL

FIGURE 1: SOME SAMPLE LISTCAT STATEMENTS

©2003 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

