
When debugging complex and hidden NT system registry
issues, you’ll need the right tools to obtain a detailed level
of information without being intrusive to the OS or application/

driver in question. One source for such tools, www.sysinternals.com,
recently helped me when I encountered a custom database application
that used registry entries to direct the application’s file operations and
specify the IP address of the back-end SQL database.

My client had just changed the IP addressing scheme of their
servers and subsequently had problems getting to the same server
via the new IP address. At first, I thought the problem would be
simple to fix: Simply update the application’s configuration files or
registry entries to point to the new IP address. However, when we
brought up the client, the configuration settings didn’t let us specify
an address for the database server. We contacted the programmer in
Michigan who candidly admitted that he was still working on the
functionality of the configuration utility. He suggested that for the
time being we could just update a registry entry using REGEDT32.

I found in the registry where the program specified the SQL
server address and updated it with the new address as directed by
the application’s creator. When we started the application, however,
the SQL server could not be found. We ping’d the server and checked
primitive port operations of the SQL service by using a kind of telnet
utility that allowed us to manually handshake a connection and
make a few database calls. That was enough to point us back to the
client for further investigation. I brought up REGEDT32 again and
noticed that the IP address had reverted back to the old setting. I
asked the programmer if the client read a configuration file and
wrote the address setting to the registry while it was loading. He
confidently indicated that the program simply looks to the registry
for the setting and uses it — no configuration files or writing to the
registry were involved.

Extremely perplexed, I downloaded the Registry Monitoring
utility REGMON from www.sysinternals.com. This utility can cap-
ture and record all registry activity and has a convenient “always on
top” feature as well as a filter that allows you to specify what type
of registry activity you want to monitor. I set the filter to capture
only write operations (see Figure 1) and ran the client after manu-
ally changing the IP address back to the new setting.

As I suspected, the client indeed wrote the original address to the
registry that REGMON captured, as shown in Figure 2. Note that
the highlighted operation was a “SetValue” request and the IP
address is shown as the value.

Having proved that a persistent write operation was causing our
problem didn’t help our Michigan developer to provide an explanation.

Debugging NT’s Registry
BY GUY C. YOST

TECHNICAL SUPPORT April ‘99 ©1999 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

N T I N S I G H T S

Figure 1: Setting REGMON’s Capture Filter

Figure 2: REGMON’s Captured Data

Figure 3: Using HandleEX to find Child Processes

He asked us to check if any batch files were calling REGEDT32
from the command line and writing the data that way; however, the
application icon was associated directly with his executable rather
than a batch file, which told us the operation was being invoked by
his program.

To speed up our troubleshooting process, I went back to the
Sysinternals Web site because I remembered seeing a description for
another utility called HandleEx that read “Ever wonder which program
has a particular file or directory open? Now you can find out.”

HandleEx is a great little program that shows you information
about which file handles and DLLs have opened or loaded as a
result of running a program or process. Notice in Figure 3 that its
display consists of two windows. The top lists the currently active
processes, including the names of their owner’s accounts. HandleEx
supports two modes, handle and DLL; the bottom window lists either
the handles that the process selected in the top window has opened
or the DLLs that the process has loaded, depending on the mode
selected. HandleEx also has a search feature that will quickly find
which processes have particular handles opened or DLLs loaded.
Version 2.0 of this utility also includes a “kill” command for termi-
nating processes and a “properties” command for viewing additional
information about a process or DLL.

I downloaded HandleEx and ran it along side REGMON to see
what files and DLLs were being accessed during application startup.
Notice in Figure 3 how DBAPP.EXE is highlighted in the top section
and how I was able to find that a second child executable called
HOSTSET.EXE was being called by DBAPP. I then highlighted
HOSTSET.EXE and found a file called HOSTSET.LDB that it was
reading to obtain the IP address. I changed the contents of the LDB
file and was able to access the SQL server from the troubled client.

The programmer apologized profusely about forgetting to tell us
about that little executable and associated setup file; he had forgotten
that he had incorporated that utility late one night after an apparently
rough day at the office.

SUMMARY
There are many times that IT professionals exclaim “Wouldn’t it

be nice if there was some little utility that would do ________?”
Sometimes, the need for that utility is so great that you contemplate
writing your own. However, before you do, be sure to check out for
their up-to-date offerings.

I applaud the abilities of Mark Russinovich and Bryce Cogswell,
the programmers of these utilities, for their generous philosophy of
making their utilities easy to obtain and use.

NaSPA member Guy C. Yost is the owner of Redstone
Consulting, an IT management consulting firm in New
York. He has authored several books on networking
for Que Publishing, including Learning NetWare 4.1,
and NetWare 4.1 SmartStart, and contributes to Technical
Support magazine as an author, columnist and technical

editor. Guy also develops and conducts seminars on networking with Windows NT,
UNIX, NetWare and Internet/intranet technologies across the United States and Canada.
He can be reached at (518) 674-5606 or gyost@logical.net.

© 1999 Technical Enterprises, Inc. For reprints of this document
contact editor@naspa.net.

ts

www.naspa.net April ‘99 TECHNICAL SUPPORT

