
TECHNICAL SUPPORT June ‘98 © 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

AS I stated in Part I, (Technical Support,
May 1998), the external CICS inter-

face (EXCI) is an application programming
interface (API) that enables a non-CICS
program running in MVS (a client program)
to call a program running in a CICS/ESA
V4R1 region (a server program) and to pass
and receive data by means of a communi-
cations area. The CICS application program
is invoked as if linked to by another CICS
application program (EXEC CICS LINK).

Part I examined the system interface
and one element of the programming
interface to EXCI. The EXEC CICS LINK
command is the easy way to access CICS
from an external client program. It does,
however, have a couple of drawbacks. First,
it is expensive in terms of establishing a
connection to the CICS server on every
invocation (it performs all six EXCI com-
mands every time). Second, this method only
works with GENERIC connections. While
the EXCI call interface is more difficult to
program, the flexibility and performance
aspects of it contrast with the easier but
stricter EXEC CICS interface.

THE LESS EASY WAY
I could have titled this section the “More

Difficult Way” but this would deny the flexi-
bility and performance aspects of this
method. To use the EXCI call interface, the
programmer must code at least five set-up
and shutdown calls along with one or more
DPL calls to connect to, use and disconnect
from the server program. The six calls are
shown in Figure 1 and must be invoked in
the order shown.

The format of each call is dependent on
the language used and the number of para-
meters that need to be passed. The program

called is DFHXCIS and when compiled the
program must also be linked with stub
module DFHXCSTB as was the EXEC
CICS interface. Again, the program must
also be linked AMODE(31). Examples of
the various calls can be found in the sample
programs listed in Part I.

The first four parameters on all calls
are standard. Figure 2 outlines these
parameters for an example COBOL INI-
TIALISE_USER call. IBM supplies a
number of copybooks for different pro-
gramming languages to map some of these
parameters and provide data areas for them.
The copybooks are listed in Figure 3. The
important elements in using this methodology
can be summarized as follows:

◆ An INITIALISE_USER and
ALLOCATE_PIPE can be used
at the start of an EXCI session.

◆ AN OPEN_PIPE, one or more
DPL_REQUESTs and a CLOSE_PIPE
can be repeated at appropriate intervals.

◆ A DEALLOCATE_PIPE call can be
used to terminate the EXCI session.

Based on this summary, a dedicated sub-
routine could be used to allow multiple
non-CICS processes to have access to a
CICS application. This has the advantage of
curtailing the set-up overhead for each DPL
call as highlighted for the EXEC CICS LINK
interface. Additionally, both GENERIC
and SPECIFIC EXCI connections are
supported. Full details of all parameters
and how they should be used can be found
in the CICS/ESA External CICS Interface
V4R1manual.

While the EXCI call interface

is more difficult to program,

the flexibility and performance

aspects of it contrast with

the easier but stricter EXEC

CICS interface.

CICS/ESA V4R1: External
CICS Interface — Part II

BY MICHAEL H. CARROLL

June ‘98 TECHNICAL SUPPORT© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

One particular aspect of parameter passing
that may cause some difficulty is where DPL
calls allow a “NULL” parameter to be
passed. This is usually where the parameter is
not required or you wish the default for this
parameter to be used. C/C++ programmers
will be familiar with the concept of passing a
NULL pointer to a function or subroutine,
which is essentially what I’m talking about
here. Figure 4 provides an example of how to
issue an EXCI DPL call with the userid and
uowid parameters omitted in a COBOL pro-
gram using a null parameter.

ERROR PROCESSING AND RECOVERY
After each call to EXCI, whether using the

EXCI call or the EXEC CICS LINK inter-
face, the five-word return area contains infor-
mation on the status (success or otherwise) of
the call. The layout of this area is as follows:

1. one-word response field

2. one-word reason field

3. two one-word subreason fields —
subreason field-1 and subreason field-2

4. one-word CICS message pointer field.
This is zero if no message is present,
otherwise it contains the address of
a storage area containing the message.
This is formatted as follows:

• a two-byte LL field — LL is the length
of the message plus the length of the
LLBB field

• a two-byte BB field set to binary zero
• a variable length field containing

the text of the message

The DFHXCPLx copybook provides a
standard return area for use with various
program languages.

Once again, IBM supplies copybooks
with equates for all the possible return
codes that the interface can return. These
copybooks are detailed in Figure 5.
Possible returned values for the response
field are highlighted in Figure 6. Generally
speaking, a zero return code indicates suc-
cess, except for a DPL_REQUEST call when
the DPL return codes should be checked also
to ensure satisfactory completion.

SECURITY
CICS applies security checks in a number

of ways against requests received from an

MVS client program. These are:

◆ MRO logon and connect security,
performed by DFHIRP

◆ link security, performed by the
CICS server region

◆ user security checking in the
server application program

MRO Logon
DFHIRP, the CICS interregion commu-

nication program, performs security checks
against users who want to log on to IRP
(specific connections only) and connect to a
CICS region.

The MVS client program is treated the
same as another CICS region as far as MRO
logon and connect (bind-time) security
checking is concerned. This means that
when the client program logs on to the
interregion communication program, IRP
performs logon and bind-time security
checks against the userid under which the
client program is running. In the remainder
of this section, I refer to this as the batch
region’s userid.

To enable your client program to logon
successfully to IRP and to connect to the
target server region, you must ensure that:

1. The batch region’s userid is defined as
a user profile to your security package.

2. The batch region’s userid is authorized
to its own DFHAPPL.batch_user_name
RACF FACILITY class profile(s) with
UPDATE authority. Use the appropriate
mechanism in any other security package
you may be using (e.g., ACF2).

3. The batch region’s userid is authorized
to the DFHAPPL.applid RACF FACILITY
class profile of the target CICS server
region with READ authority.

Link Security
The target CICS server region performs

link security checking against requests
from the client program. These security
checks cover transaction attach security
(when attaching the mirror transaction)
and resource and command security
checking within the server application
program. The link userid that CICS uses

S Y S T E M S

Description EXCI Call

INITIALISE_USER

ALLOCATE_PIPE

OPEN_PIPE

DPL_REQUEST

CLOSE_PIPE

DEALLOCATE_PIPE

Number of
Parameters

5

7

5

14

5

5

Initialize the user environment, including

obtaining authority to use IRC facilities.

Allocate a single session, or pipe,

to a CICS region.

Cause IRC to connect an allocated pipe to

a receive session of the appropriate connection

defined in the CICS region named on the

ALLOCATE_PIPE command.

Issue a distributed program link request across

an open pipe connected to the CICS system

on which the server (or target) application

program resides. More than one of these calls

can be issued consecutively.

Disconnect an open pipe from CICS. The pipe

remains in an allocated state, and its tokens

remain valid for use by the same user.

Deallocate a pipe from CICS. On completion

of this command, the pipe can no longer be

used, and its associated tokens are invalid.

Figure 1: EXCI Call Commands

© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.TECHNICAL SUPPORT June ‘98

To use the EXCI call interface,
the programmer must code at least

five set-up and shutdown calls
along with one or more DPL calls
to connect to, use and disconnect

from the server program.

for these security checks is the batch
region’s userid.

To ensure these link security checks do
not cause security failures, you must ensure
that the link userid is authorized to the
following resource profiles, as appropriate:

◆ the mirror transaction, usually CSMI

◆ the server program and any files,
queues or other programs it accesses

◆ any systems programming interface
commands that the server program
might invoke

User Security
The target CICS server region performs

user security checking against the userid
passed on a DPL CALL request. User security
checking is performed only when connections
specify ATTACHCSEC(IDENTIFY). User
security is performed in addition to any
link security.

For user security, in addition to any
authorizations you make for link security,
you must also authorize the userid specified
on the DPL CALL request. Note that there
is no provision for specifying a userid on
the EXEC CICS LINK command. In this
case, the external CICS interface passes the
batch region’s userid. For further information
check your security package documentation
on CICS security.

S Y S T E M S

Figure 3: Copybooks Supplied for EXCI Programs

Figure 4: Example of Null Parameter Passing

DPL CALL without userid and uowid (COBOL): In this example, the DPL parameters used on the call are
defined in the WORKING-STORAGE SECTION, as follows:

DPL parameter COBOL variable

version_number 01 VERSION-1 PIC S9(8) COMP VALUE 1.
return_area 01 RETAREA. structure
user_token 01 USER-TOKEN PIC S9(8) COMP VALUE ZERO.
call_type 03 DPL-REQUEST PIC S9(8) COMP VALUE 6.
pipe_token 01 PIPE-TOKEN PIC S9(8) COMP VALUE ZERO.

pgmname 01 TARGET-PROGRAM PIC X(8) VALUE “DFH$AXCS”.
commarea 01 COMMAREA. structure
commarea_len 01 COMM-LENGTH PIC S9(8) COMP VALUE 98.
data_len 01 DATA-LENGTH PIC S9(8) COMP VALUE 18.
transid 01 TARGET-TRANSID PIC X(4) VALUE “EXCI”.

dpl_retarea 01 DPL-RETAREA. structure
dpl_opts 01 SYNCONRETURN PIC X VALUE X”80”.

The variable used for the null address is defined in LINKAGE SECTION, as follows:

LINKAGE SECTION.
01 NULL-PTR USAGE IS POINTER.

Using the data names specified in WORKING-STORAGE SECTION as described above, and the NULL-PTR
name as described in the LINKAGE SECTION, the following invocation of the DPL function omits the uowid
and the userid parameters, and replaces them in the parameter list with the NULL-PTR variable:

DPL-SECTION.
*

SET ADDRESS OF NULL-PTR TO NULLS.
*

CALL ‘DFHXCIS’ USING VERSION-1 RETAREA USER-TOKEN
DPL-REQUEST PIPE-TOKEN TARGET-PROGRAM
COMMAREA COMM-LENGTH DATA-LENGTH
TARGET-TRANSID NULL-PTR NULL-PTR
DPL-RETAREA SYNCONRETURN.

Copybook name Language

DFHXCPLD Assembler

DFHXCPLH C

DFHXCPLO COBOL

DFHXCPLL PL/I

Area indicating the function of the command.
DFHXCPLx copybook supplies values for all
call-types e.g., INIT-USER.

Description Parameter

VERSION-1

EXCI-RETURN-
CODE

USER-TOKEN

call-type

Input/
Output

I

O

O

I

 Size

Full-
word
binary

5 words

1 word

1 word

Indicates the version of the external CICS
interface parameter list being used. It must be
set to 1. The DFHXCPLx copybook has
a predefined field for this value.

Area to receive response and reason codes,
and a message pointer field.

Token returned on the Initialise_User command.
Must be used on all subsequent calls for
this session.

e.g., INITIALISE_USER call in COBOL:

CALL ‘DFHXCIS’ USING VERSION-1
EXCI-RETURN-CODE
USER-TOKEN
INIT-USER
APPLICATION.

Figure 2: First Four Parameters on All EXCI Calls

June ‘98 TECHNICAL SUPPORTwww.naspa.net

SUMMARY
I hope this two-part review has helped

you understand the concepts behind
CICS V4R1’s External CICS Interface.
Perhaps you already have an application
in mind for EXCI. It may seem daunting,
but I can assure you that once you’ve
grasped the initial understanding of how
this mechanism works it will be just like
writing another batch and/or CICS program!
Have fun!

REFERENCES
IBM-supplied sample EXCI programs
shipped with CICS V4R1
CICS/ESA External CICS InterfaceVersion 4,
Release 1
Document Number SC33-1390-00
CICS/ESA Application Programming
GuideVersion 4, Release 1
Document Number SC33-1169-00

NaSPA member Michael H. Carroll has 19 years
of experience in the data processing industry. He’s
worked in both manufacturing and financial businesses,
performing systems and applications programming
for mainframe and client/server environments.
Michael is a consultant currently working on Y2K
projects for a large financial institution in Ireland.

©1998 Technical Enterprises, Inc. For reprints
of this document contact sales@naspa.net.

ts

S Y S T E M S

Figure 5: Copybooks Supplied for EXCI Return Codes

Copybook name Language

DFHXCRCD Assembler

DFHXCRCH C

DFHXCRCO COBOL

DFHXCRCL PL/I

ExplanationResponse

0

4

8

12

16

Meaning

OK

WARNING

RETRYABLE

USER_ERROR

SYSTEM_ERROR

For all EXCI commands, other than DPL_REQUEST,

the command was successful. If OK is returned for

a DPL_REQUEST, then the DPL return area must

also be checked.

EXCI detected an error but the command

completed successfully. Check the reason code

field for information about the error.

The EXCI call failed. This error usually indicates

a problem with the environment not EXCI or the

server program. Reason code field given describes

the error detected.

The EXCI command has failed. Usually a problem

in the server region or server program (e.g., a

security check failure or an abend). Reason code

gives details.

The EXCI command has failed. EXCI itself

has detected an error. Again reason code

contains details.

Figure 6: Standard Return Codes From EXCI Invocations

