
TECHNICAL SUPPORT January ‘98 © 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

IN Part I (Technical Support, December
1997), we described what LE is,

examined why you need to consider
converting to LE now, and presented a couple
of key issues regarding potential problems.
This month, we explain what we did to
assess the impact of the LE implementation,
examine some of the problems that surfaced
during our implementation, and discuss
solutions to those problems.

OUR ENVIRONMENT
To better understand our approach, some

background is necessary. As we mentioned
in Part I, our shop is the data center for the
State of Wisconsin. We have a capacity of
approximately 1200 MIPS and have about
4.5TB of online storage and 15TB of
migrated storage. Our data center supports
CICS 3.3, CICS 4.1, IMS 4.1, DB2 4.1, and
IDMS 12.0.1. Due to the differences in the
business requirements of the various agencies
within the State of Wisconsin, we have a
very diverse application portfolio. This
diversity is compounded by the fact that the
agencies were once spread among three
different data centers with distinctly different
systems management philosophies. As the
consolidated data center has evolved, we
have created a set of LPARs that separate
systems programmer, development, produc-
tion, and communications workloads. Our
run-time libraries are in the linklists of each
system. This made our conversion to LE
easier since STEPLIBs did not exist in the
JCL, and therefore did not need to be changed.

SYSTEMS SOFTWARE AND LE
Before beginning to analyze your

organization’s application set for possible
LE incompatibilities, make sure you check

with the vendors of your systems software
or purchased applications. It is very important
that these systems or applications are
compatible with the release of LE that you
intend to install. While most software is
compatible with LE, you may need to upgrade
to a new release or install compatibilityPTFs
to some of the systems software. A few
phone calls can save you a great deal of
trouble during LE implementation.

ANALYZING YOUR APPLICATION SET
At IBM presentations dealing with LE,

IBM has stressed that an application inventory
must be taken in order to solve both the LE
conversion issue and the Year 2000 problem.
While this sounds nice in theory, in practice
it is extremely hard to accomplish. This is
especially true for large or diverse data
centersthat support a number of separate
application groups. While we applaud any
organization that can actually accomplish
such a feat, we looked for another solution
to fit our environment.

THE EDGE PORTFOLIO ANALYZER
Determining the compatibility of in-

house applications can be a challenge.
However, there is a tool that can be used to
analyze load modules. In addition to being
endorsed by IBM, the Edge Portfolio
Analyzer (Edge Information Group, Des
Plaines, Ill.) had a couple of features that
were extremely useful in getting a handle
on the LE conversion issue.

First, Edge can be used to create reports
and/or a dataset with information about
load modules and their different csects.
This includes such items as time and date of
compilation and linkage, language and
language maintenance level used to create

This concluding article

explains how the authors

assessed the impact of the

LE implementation at their site,

examines some of the

problems that surfaced

during the implementation,

and discusses solutions

to those problems.

Implementing IBM’s
Language Environment:
Part II — Assessing
LE’s Impact

BY CRAIG COLLINS
AND DAVE CHRISTIANSON

January ‘98 TECHNICAL SUPPORT© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

S Y S T E M S

the module, linkage parameters, and compile
parameters. Based upon the items that IBM
lists as compatibility issues for LE, the
dataset that Edge produces can be used to
find a subset of modules for which com-
patibility problems are expected.

Second, we were able to use Edge to
produce link-edit cards for a module. This
was very useful when we wanted to re-link
a module with LE to determine whether a
compatibility issue was resolved. For each
of the run-time csects found in the original
module, Edge produces REPLACE state-
ments that can be fed directly into the
binder (IEWL).

A third way that Edge was able to help us
was through some of its canned reports.
One of these reports shows which modules
are not re-entrant. This report is very
important due to the CICS re-entrancy issue
described later in this article.

SUBSETTING AND REPORTING
We used SAS to help us analyze the data

produced by Edge. This gave us the flexi-
bility to subset the data based upon certain
criteria and produce reports for the appli-
cation developers to review. To give the
developers some additional data about
these modules and help limit the scope of
which modules could be effected by LE, we
used some data from our accounting system
to report whether a module had been used
over a given period of time. The data from
Edge has also provided us with the oppor-
tunity to do additional analysis when previ-
ously unknown compatibility problems pre-
sent themselves or when compatibility
issues we expected do not surface.

Using the reports created through the use
of Edge and SAS, we were able to narrow
the list of potential problem modules from
a total of approximately 145,000 to 2,000
that needed further investigation. Besides
helping the developers figure out where to
focus, these reports were also useful in
developing a timeline for the conversion
and convincing management that the plan
was sound.

SMALL AND CONTAINED APPLICATION TESTS
We also performed some small application

tests with a few of the application develop-
ment areas. Our customers used the reports
we had produced using Edge and SAS to
determine which modules to test. Using
STEPLIBs, they were able to run a repre-
sentative sample of both modules that we

reported as likely to fail and those we
expected to work correctly under LE. These
tests were extremely valuable to our analysis.
We found that we interpreted a number of
IBM’s documented conversion issues too
broadly. There were quite a few things that
worked which we expected to fail. Based on
IBM’s documentation, we thought that all of
our remaining OS/VS COBOL programs
would need to be re-linked. As it turned out,
most of our OS/VS COBOL programs
worked just fine under LE. The few that
failed did not work after a re-link and needed
to be converted to COBOL II. The rest of
the program failures we encountered were
related to either PL/I or inter-language calls
between COBOL II and PL/I. We were able
to determine that re-links fixed most of
these problems. This allowed us to further
limit the scope of our analysis routines.

Before beginning to analyze
your organization’s application set
for possible LE incompatibilities,

make sure you check with the
vendors of your systems software

or purchased applications.

Besides helping us to further refine our
analysis, the tests had other beneficial effects.
Most important, performing the tests in con-
junction with the application development
areas gave both the systems programmers
and the developers a better understanding
of what was involved and what problems
could be expected. It also helped to take
some of the fear out of the conversion and
provide a comfort level with one another
that would definitely be necessary during
the actual conversion. The tests gave all of
us an opportunity to communicate about LE
without the pressures that are inherent once
production problems start popping up.
Finally, it provided an opportunity to look
at the potential problems and test the solutions
we had developed, including re-linking
modules with LE in order to develop a plan
for future LE conversion issues.

IMPLEMENTING LE IN STAGES
Separate LPARs for Test/Production

Our operating environment was designed
to allow changes to percolate up through

various systems levels from a systems pro-
grammer environment to development and
then to production. Using this methodology,
we are more likely to catch potential problems
before they affect production. For LE
implementation this is a very important
facet of our strategy. Changing the entire
run-time for the third generation languages
(3GLs) is a daunting task that has the
potential to affect a very large segment of
production work. We were able to test LE
with systems products and plan for neces-
sary compatibility changes at the systems
programmer level, thereby eliminating
those problems at the development level.
Similarly, applications programs could be
tested in development before moving to
production. We moved LE right into the lin-
klist at each level, replacing the old run-
time libraries. We also had the startup decks
changed for CICS and IMS.

We feel that this methodology was much
more complete than trying to STEPLIB to LE.
Besides eliminating the need for customer
JCL to be changed in order to ensure that
they were using LE, it also helped us identify
application areas that were as of yet unfamiliar
with LE and what we were doing. We were
able to identify areas that were not going to
be ready by our planned production date
and develop contingency plans so that the
production work would be able to continue.

We prepared for the production imple-
mentation by developing procedures to deal
with the problems that were encountered
during the testing. Besides having this
“cookbook” for our own use, we provided
the information to our customer’s technical
staff. Their staff prepared by identifying
programs that were similar to those that
failed in testing, fixing them during the pro-
duction implementation with the methods
identified as part of the testing. As a result,
we estimate that less than 100 programs
failed in production due to the implementation
of LE, of which at most 10 programs were not
working with LE within 24 hours of failure.

Using STEPLIBs as a Temporary Solution for Batch
Programs That Won’t Work Under LE

As the first contingency plan for production,
we had the customers STEPLIB to the old
run-time libraries when production programs
were abending after implementing LE. If it
was an actual LE problem, using this method,
the production work could be completed
without interruption and the problem investi-
gated further. This was also useful since some

www.naspa.net

S Y S T E M S

TECHNICAL SUPPORT January ‘98

things were initially blamed on LE that
were not LE problems. Certain program
failures occurred using the old run-times as
well, the discovery of which turned the focus
to the real problem with the program.

Most of the actual LE problems identified
have been fixed and these additional
STEPLIBs removed from those jobs. There
are a couple of outstanding issues that will
be covered later in this article.

CICS ISSUES
Our migration to LE occurred at the same

time as the initiative to change from CICS
No-Protect to CICS Protect was happening
in the test environments. This caused a bit
of initial confusion for our customers
due to the re-entrant requirement for VS
COBOL II programs running under LE in
CICS and the fact that some code was
abending due to CICS Protect. These are two
different issues with two different causes.

Handling the CICS Reentrancy Requirement
The CICS reentrancy requirement is an

issue that is introduced with LE. The LE run-
time requires that VS COBOL II programs
be re-entrant. Any VS COBOL II program
that is run through the CICS precompiler
will be compiled re-entrant because the
precompiler inserts a CBL statement into
the source. However, if the module also
contains VS COBOL II code that was not
compiled re-entrant, the program will fail
with the IBM message:

IGZ0018S – On CICS, an attempt was
made to run a COBOL program that is
not re-entrant. The Program Name is
XXXXXXXX

The most common occurrence of this was
with subroutines that are used for both
batch and online. The problem is corrected
once the program was recompiled and re-
linked re-entrant.

The CICS Protect Issue
While CICS Protect problems are not

caused by LE, we feel it is important to
explain this issue so that there isn’t con-
fusion between CICS Protect and CICS
Re-entrancy. CICS V3R3 introduced read-
only storage as a performance and security
enhancement. Programs that are linked
re-entrant are loaded into this area where
they can be protected from inadvertent

modification. This is great in theory but
poses a problem in practice. Programs that
are not re-entrant can be linked re-entrant.
Unfortunately, CICS cannot tell if a module
is really re-entrant, it can only look at the
linkage options.

Assembler subroutines using the STM
(Store Multiple) instruction are the main
culprit. When a linked re-entrant program
containing non-reentrant code is executed
in a CICS region with the protect option on,
the transaction will abend with a S0C4.
This is an issue with conversion to CICS
Protect but not an LE issue.

PRODUCTION IMPLEMENTATION IMPRESSIONS
One of the problems we encountered was

a CEE3204S Protection Exception, which
appeared to occur right at the end of the
COBOL II program when the files were
being closed. This has been an intermittent
problem that we’re trying to resolve. As a
temporary solution, the job using this program
is being STEPLIB’d to the old COBOL II
run-time library as a temporary solution.

Another problem we encountered in a
COBOL II program was caused by a READ
INTO statement on a file that had the
RECORDSIZE EQUAL 0 clause specified.
The READ INTO statement generates a
MVCL (move character long) instruction
that uses the beginning address of the
WORKING-STORAGE field as the start-
ing address of the move and the logical
record length (from the 01 record element
of the FD) for the length. The 01 record
element was a 999-byte character field. The
actual file had a 537-byte record length. In
this case, 999 bytes were not left on the
current page of working storage so the
instruction spanned unrelated pages causing
the S0C4.

This was not an LE problem per se.
However, the program would not abend
when we STEPLIB’d to the COBOL II run-
time, so the conversion to LE brought this
problem to the surface. After consulting
with IBM, the code was changed from a
READ INTO statement to a READ, and
logic was added to move only the length of
the actual 537-byte record, not the 999-byte
logical record. The only explanation we
could come up as to why this would work
under the COBOL II run-time and not LE
was that storage is allocated somewhat
differently between the two run times.

We also had some PL/I programs abend
with error message

USER COMPLETION CODE=4039 REASON
CODE=00000000

IBM0201S ONCODE=81

This problem appears to occur when the
DCB attributes of a PL/I output file are not
specified in the run JCL or there is a mis-
match between the definition in the JCL and
the definition in the program. Specifying the
attributes in the JCL corrected this problem.

Also, some load modules containing
PLISHRE may need to be re-linked with
the OS PL/I Library Routine Replacement
Tool. You can find information explaining
how to do the re-link in Chapters 4 and 9 of
the PL/I Compiler and Run Time Migration
Guide. Our best advice is to re-link abending
modules that contain PLISHRE to a test
library using the replacement tool and test it
again before doing too much analysis. The
re-link will fix most problems you encounter
with this sort of module.

Overall, we were pleased that the LE
implementation caused very few problems
at our site. Of course, every installation
has a different mix of applications, so
your results may vary. However, our
experiences were far better than what we
expected based upon the IBM presenta-
tions we attended. The fire and brimstone
preached by IBM certainly caused us to
approach this implementation with caution,
to complete the necessary analysis, and to
develop detailed contingency plans. The
results were a surprise, but a happy sur-
prise, and that’s the best kind.

Craig Collins has been a systems software specialist
at the State of Wisconsin for the past five years. Prior
to this he was a systems programmer for four years
at an insurance company.

Dave Christianson has been a systems software
specialist at the State of Wisconsin for the past
three years. Prior to this he was a financial
applications developer for 13 years at several
manufacturing and utility firms.

©1998 Technical Enterprises, Inc. For reprints
of this document contact sales@naspa.net.

ts

