
May ‘97 TECHNICAL SUPPORThttp://www.naspa.net

MVS is changing! One of the highest-
p ro file trends in data pro c e s s i n g
today is the growth of client/server or

“open systems” applications that run on
UNIX-based plat fo rms. As these ap p l i c at i o n s
become more widespread, powerful, and
critical to business operations,their require-
ments for storage and processor capacity
often exceed the capability of smaller hard-
ware systems to support them. In what has
become a classic pro bl e m , systems that sup-
p o rt dozens or hundreds of users relatively
well bog down when scaled up to enterp ri s e-
wide pro p o rtions. Pe r fo rmance suffe rs ,
storage capacity is exhausted, and backup
techniques are inadequate to manage the
volume of data.

High transaction rates and large amounts
of data are nothing new to MVS systems
programmers and storage administrators,
however. The extremely high reliability and
high capacity of MVS (now OS/390) systems
is the result of many years of experience
during which IBM, vendors, and customers
painstakingly developed and refined the
systems and methodologies needed for
successful large-scale operations.

A NEW CHALLENGE FOR
THE STORAGE ADMINISTRATOR

What is new is the use of OS/390 to run
the applications that previously required
UNIX platforms. With the introduction of
OS/390 Ve rsion 1 Release 2, the OpenEdition
component of the operating system prov i d e s
a full UNIX environment within MVS/ESA
(XPG4 UNIX Profile branding). For the
user, this means that applications can take
a dva n t age of OS/390’s strengths in re l i ab i l i t y,
capacity, and security, while preserving the
UNIX env i ronment (the command shell
and file system) that they are accustomed
to. For the storage administrat o r, t h i s

means a new challenge, that of managing
OpenEdition/MVS files in addition to tradi-
tional MVS data.

Omnia mutantur,
nos et mutamurin illis

(All things change,
and we change with them).

— Matthias Borbonius:
Deliciæ Poetarum

The OpenEdition file system is a hierar-
chical file system. In a manner familiar to
anyone who has ever used Windows or MS-
DOS, files are contained within directories,
and directories may be contained within
other, higher-level directories. The highest
level directory is called the root directory.
The full set of names re q u i red to specify
a file within the hiera rchical file system
is called a path. Thus, the path “/pay-
roll/test/data/june” specifies a file called
“june” which can be found in the “data”
directory by following the directories from
the root (“/”) to “ p ay ro l l ” to “ t e s t ” to “ d at a ” .
(Note that the slashes are in a forward
direction, unlike Windows or MS-DOS).
The path names for hierarchical files may
be, and typically are, specified in lower-
case. This is obviously quite a different
s cheme from “ n o rm a l ” MVS data. A l t h o u g h
hierarchical files are usually accessed from
UNIX programs or the OpenEdition shell,
they can be accessed from MVS, and this
has resulted in the introduction of a number
of JCL parameters that may be unfamiliar
to mainframe programmers. Figure 1 shows

how a hierarchical file might be created in
a batch job.

The storage administrator has more to be
c o n c e rned with than a new file naming
s y st e m , h oweve r. He/she may be re s p o n s i bl e
for installing OpenEdition, setting up the
hierarchical file system, establishing allo-
cation, backup, and migration policies for
OpenEdition dat a , and ensuring that disaster
recovery procedures are in place for open
systems data.

The first task for a storage administrator
who must install OpenEdition is to ensure
that the SMS subsystem is available and
that the ACS routines allow data to be
SMS-managed. At least one SMS-managed
volume is re q u i red to run OpenEdition
because all OE “file systems” (directories
and the subdirectories and files under them)
are stored within SMS-managed datasets
c re ated with the DSNTYPE=HFS para m e t e r.
An HFS dataset contains an entire “mount-
able file system.” Fi g u re 2 shows an ex a m p l e
of allocating an HFS dataset. The dataset
name of the HFS dataset is unrelated to the
OpenEdition directories and files that may
be contained within it. In order for an OE
file system to be known to OpenEdition, it
must fi rst be logi c a l ly “ m o u n t e d ” at a
“mount point” (an empty directory). The
TSO MOUNT command accomplishes this
by associating the HFS dataset name with a
mount point. See Figure 3.

HFS datasets are an extended type of
PDSE, consisting of 4KB blocks that are
controlled by the FAMS (File Attribute
M a n agement System) component of DFSMS
in the same way as PDSEs; however, the
internal format of an HFS dataset is com-
pletely different from that of a PDSE. Like
P D S E s , HFS datasets must be SMS-
m a n age d and are limited to a single disk
volume, but may be expanded to include up

Changing Times: OpenEdition
HFS Files
BY STEVE PRY O R

S T O R A G E S T R A T E G I E S

to 123 extents on that volume. Storage
management reporting tools recognize HFS
datasets by the presence of the DS1PDSE
and DS1PDSEX bits (X’80’ and X’20’) in
the SMS indicators of a dataset’s format-1
DSCB. These bits were reserved prior to
the introduction of SMS; however, some
DASD management programs used these
fields for their own purposes in the past. If
the SMS address space is being activated
for the first time in order to take advantage
of open systems data, it may be important
to scan the V TOCs to ensure that no re s i d u a l
data resides in the SMS indicator fields.

FACTORS AFFECTING PERFORMANCE
When setting up the OE hierarchical file

system, the storage administrator should
take into account factors that will affect the
performance of the open systems applica-
tions. Too many HFS datasets on a single
volume can cause I/O bottlenecking, for
example, so it may be important to spread

the HFS files across devices. Each OE user
should have his/her own mountable fi l e
s y s t e m (HFS dataset) to avoid contention
between locks required on the file systems
by OE processes. The root file system,
which is a separate HFS file, should be
defined as read-only in the BPXPRMxx
member of SYS1.PARMLIB. This will not
only i m p rove the I/O perfo rmance of the
OE system, but will also prevent the root
file system from accidentally being corrupt-
ed. Finally, it may be useful to put the /tmp
d i re c t o ry in a sep a rate HFS dataset on
a high-perfo rmance vo l u m e, since this
d i re c t o ry may be subject to heavy use if
there are many OE users.

In addition to placement and perfo r-
mance strategies, the storage administrator
is like ly to be re s p o n s i ble for disaster
re c ove ry and compatibility issues wh e n
implementing OE. As with any system, it is
important to ensure that the correct level of
hardware and software will be available at a

disaster recovery site. The disaster recovery
site should be able to run DFSMS level 1.2
or higher, and any system that shares the
HFS files should either be at this level or
have toleration PTFs applied. Large instal-
lations also need to consider that HFS files
can be shared by OE systems across a sys-
plex only if they are read-only.

Once OpenEdition applications are in
place, the storage administrator’s task shifts
from planning and setup to providing data
management services. Space availability,
backup and recovery strategies, and cross-
system considerations must be addressed.
Next month’s column will examine some of
these issues and the techniques the storage
administrator can use to help provide the
benefits of the “big iron” to open systems
applications.

NaSPA member Steve Pryor has more than 15 years of
experience in storage management, disaster recovery,
software development, and technical support. Steve
can be contacted via the Internet at pryor@atlanta.com.

©1997 Technical Enterprises, Inc. Reprinted
with permission of Technical Support maga-
zine. For subscription information, email
mbrship@naspa.net or call 414-768-8000,
Ext. 116.

ts

http://www.naspa.netTECHNICAL SUPPORT May ‘97

Figure 1: Allocating an OpenEdition File

//ALOC EXEC PGM=IEFBR14
//DD1 DD PATH=‘/payroll/test/data/june’,PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),PATHMODE=(SIRWXU,SIRGRP)

Figure 2: Allocating an HFS Dataset

//BR14 EXEC PGM=IEFBR14
//DD1 DD DSN=HFS.TEST.DATA,SPACE=(CYL,(40,1,1)),DCB=(DSORG=PO),
// DSNTYPE=HFS,DISP=(,KEEP,CATLG),STORCLAS=STANDARD

Figure 3: Logically Mounting a File System (Associating an HFS Dataset With an OE Directory)

Note: This command can be issued only by an OE user with superuser authority.

MOUNT FILESYSTEM(HFS.TEST.DATA) MOUNTPOINT(‘/payroll/test’) TYPE(HFS)

