
April ‘97 TECHNICAL SUPPORThttp://www.naspa.net

In the November 1996 issue of Technical
S u p p o rt , I examined how to write a
Common Gateway Interface (CGI) so

that a web page can invoke a native VSE
p rogra m , wh i ch can dy n a m i c a l ly bu i l d
HTML (Hyper Text Markup Language)
commands and pass them back to the user.
A typical example of this is a web page
counter that you often see (e.g., “Welcome,
you are visitor 000123”).

But what if you want to access your
corporate database? Wouldn’t it be nice to
be able to have a web page pass parameters
to your CGI,and then have the CGI pass the
query to your CICS, IDMS, or other form
of transaction processor? Personally, I think
it’s a really cool idea.

Why? Well, by using this process, we can
provide simple, yet graphically appealing
m e nu s , without the back - b reaking wo rk
that most screen scrapers require. What’s
more, you don’t have to worry about client
programs, changes behind the screens or
any other nonsense because none of that is
necessary any more.

The TCP/IP system that I will be talking
about this month is TCP/IP for VSE from
Connectivity Systems. Because of its native
implementation of the TCP/IP stack, pro-
viding a CGI interface into any area of VSE
becomes a simple task.

There are several methods that you can
invoke to have a program build web pages.
The first is to have a program update the
VSE HTML source library whenever data
changes. For example, you could have a
batch job run nightly to build a page to
show what shipments went out the night
b e fo re. Such an ap p l i c ation does not
require real-time data queries, since the
data will never change.

For queries where you want to see some
specific information, such as the price of

pork bellies in 1987 during the third week
of May, you really want to use your trans-
action processor to perform the query for
you, and then return the result in a method
similar to a 3270-session, but with a com-
pletely different look.

Wouldn’t it be nice
to be able to have a web page
pass parameters to your CGI,

and then have the CGI
pass the query to your CICS,

IDMS, or other form
of transaction processor?

This brings us to the idea of client/server.
In a client/server relationship, the client
makes a request, and the server responds. In
this example, the user running Windows
has a client called Netscape. The Netscape
client talks to the HTTP server. The HTTP
s e rver sees that a CGI is being invo ke d
and passes control to the CGI. The CGI
establishes communication with the online
p rocessor progra m , wh i ch perfo rms the
request and returns the data to the CGI,
which, in turn, returns the data to the HTTP
s e rve r, wh i ch re t u rns the data to the
Netscape client. As you can see, the role of
client and server can flip-flop.

In the following example, I will be using
the standard XPCC interfa c e. Ty p i c a l ly, yo u
can use a number of diffe rent commu n i c at i o n
methodologies. Personally, I prefer to use
UDP/IP in such an application, but that
would re q u i re a gre at deal more ex p l a n at i o n
than I can provide here. If there is a great

deal of interest in this area, perhaps a future
column on this subject will be provided.

WHAT IS XPCC?
XPCC is a programming interface that

allows programs to exchange data among
themselves. Typically, we use this when we
want an application program to talk to
POWER. Information in this area can be
found in the IBM V S E / P OWER Ap p l i c at i o n
P rogramming Guide (SC33-6574-01) as
well as the IBM VSE/Advanced Functions
D i agnosis Refe rence Supervisor (LY 3 3 -
9172) manual. The first resource provides a
rudimentary understanding, since it only
relates to communicating with POWER.
The second manual goes into even g reater
depth. Finally, IBM has also provided an
example of communicating with POWER
in IJSYSRS.SYSLIB in a member named
PWRSASEX.A.

So how do you code an XPCC client and
server? First, you will need to code the
XPCC control block using the XPCCB
macro. This control block contains several
fields that are needed during the process of
your XPCC operations. The MAPXPCCB
macro will generate a DSECT that will map
the layout of this control block. Figure 1
shows a typical way of coding the XPCCB
in a program. In this example, we point to
the XPCCB and then map it to the DSECT
layout so that we can refer to the various
fields by field name instead of specific off s e t
addresses. Later on, we define the XPCCB.
Not all of the fields are necessary when
defining this control block, however, the
fi rst two (APPL and TOAPPL) are re q u i re d.

The APPL field defines the name of the
application. It must be a unique name that
will be registered with the XPCC interface
when the program identifies itself to the
system. If there is already a program active

How to Access Your Online Data
From a Web Page
BY LEO J. LANGEVIN

V S E T O O L S & T E C H N I Q U E S

http://www.naspa.netTECHNICAL SUPPORT April ‘97

with the same identifier, then your request will fail. Therefore, you
must determine how you will be fo rcing this uniqueness. In our case,
however, there will only be one CGI asking the request (although a
number of different HTML pages might use the same CGI), and
one program accepting the re s p o n s e, so we wo n ’t wo rry ab o u t
p roviding a unique name (you can always insert the partition ID, t a s k
number and any other unique information as part of the name). Just
remember that you cannot have blanks inside of your name.

The TOAPPL will define the name of the other side of the con-
nection. If you are the client, then you must know the server’s
name. If you are the server, then you don’t need to know who is
going to connect to yo u , a n d
you should use the value of
A N Y. In this way, a serve r
could re c e ive multiple re q u e s t s
f rom an assortment of outside
programs (just as POWER does)
by having TOAPPL=ANY and
waiting for a connection to
occur. In our example, the CGI
will have an A P P L = C G I C I-
CS1,TOAPPL=CICSCGI1. The
CICS progra m , h oweve r, w i l l
have APPL=CICSCGI1,TOAP-
PL=ANY. Remember, if you don’t use CICS at your shop, you can
use whatever naming convention works best for you.

Since we want to ex ch a n ge data between the two progra m s ,
we will also define a bu ffer and a bu ffer length. The BU F F E R
p a rameter defines the sending buffer, while the REPAREA defines
the area that will receive the reply. In our example, CGICICS1
would have BUFFER=(BUFF,8) to send 8 bytes of data to the
recipient and REPA R E A = (R E P LY,256) to be able to re c e ive up
to a 256-byte response. If your buffer is too small, and you issued
a SENDR request, you will receive the truncated reply with an
error indicator.

There are three methods of sending data to the other side:SEND,
SENDR and SENDI. Each of these provide a method for XPCC to
send data to the other application program. SEND simply sends the
data and does not wait for a response. SENDR sends the data, and
requires a reply from the recipient. SENDI works like SENDR,
except that if the receiving buffer is not large enough, you can issue
multiple RECEIVE requests to get the rest of the data. After all of
the data has been retrieved, the replying program posts that the
transfer is complete.

Speaking of posting, there are three ECBs in the XPCCB: the
SEND ECB (IJBXSECB), the RECEIVE ECB (IJBXRECB) and

the CONNECT ECB (IJBXCECB). As with any ECB, these fields
a re a fullwo rd in length, and when the high order bit is set at
+2 f rom the beginning of any of these fields (e. g. , “ T M
IJBXRECB+2,X’80’” would test if any data has yet been received)
your program can take action. Your program would then either
issue a WAIT on any or all of these ECBs or perform some other
processing and check for a POST periodically. In CICSCGI1,since
its only purpose is to wa ke up when there is a re q u e s t , p ro c e s s
the re q u e s t , and then go back to sleep , it will do a WAIT on
the CONNECT ECB.

When IJBXCECB is posted, then there is a request fro m
a n o t her application to commu-
n i c ate with CICSCGI1. In a
simple ap p l i c at i o n , s u ch as
C G I C I C S 1 , we could issue a
CONNECT to CICSCGI1
when the CGI is initially
o p e n e d, and ke ep the connec-
tion open for the lifetime of the
HTTPD. This is because C G I-
CICS1 is the only ap p l i c at i o n
t h at will commu n i c ate with
CICSCGI1. For ex a m p l e, l e t ’s
s ay we decided to add a bat ch

i n t e rface as a second program that had the same APPL name as
CGICICS1. For this second program to be able to communicate
with the CICS progra m , it would be best to continu o u s ly CONNECT
and DISCONN between requests to provide an opening for the
other program. This also has the additional benefit of not needing
to delete and define the CGI in case CICS is brought down and the
CICSCGI1 program is no longer available.

There are 15 different functions available to an XPCC program:

◆ IDENT: Register with XPCC as an application;
◆ CONNECT: Link to another XPCC user;
◆ SEND: Send data — no response;
◆ SENDR: Send data and expect a reply;
◆ SENDI: Send data, expect a reply,

and allow multiple RECEIVE;
◆ REPLY: Reply to data that was received;
◆ RECEIVE: Receive data;
◆ CLEAR: Purge data that is being sent;
◆ PURGE: Purge data that is being received;
◆ DISCONN: End connection after the exchange is over;
◆ DISCPRG: End the connection now!;
◆ DISCALL: End all connections;
◆ TERMIN: Remove link to XPCC when it’s ready;
◆ TERMPRG: Remove link from XPCC right now!; and
◆ TERMQSCE: Schedule an XPCC drop.

N ow that we have the XPCC info rm at i o n , l e t ’s go through a
s a mple session between the Netscape user and the CICS program:

1. The Netscape user enters:
“HTTP://hostname/INQUIRY.HTML”.

2. The HTTPD goes into the VSE library, reads INQUIRY.HTML
and sends it back to the user.

Figure 1: Coding the XPCCB in a Program
...
LA R3,XPCCB
USING IJBXPCCB,R3
...

XPCCB XPCCB APPL=applname, x
TOAPPL=[applname|ANY], x
[BUFFER=(addr|addr,len), x
REPAREA=(addr,len), x
MECB=[addr|(reg)], x
VERSION=1|2
...
MAPXPCCB DSECT
...

This is all that it takes to have a web page
driven by your transaction processor —

two simple programs that use a VSE interface
that have been around for quite some time.

3. The user sees a screen of information.
Th e re is also a request fi e l d.
“ 1 0 / 1 2 / 9 5 ” is entered into the dat e
field and the SUBMIT button is
pressed. This button is defined to
i nvo ke CGICICS1. The input field
is defined as &DATE. Obviously, this
form is not year 2000 friendly!

4. The HTTPD receives the request
“CGICICS1?&DATE=10%2f12%2f95
&SUBMIT”. The “/” is automatically
converted into ASCII HEX “%2f”.
The name of the SUBMIT button is
appended to the rest of the request.

5. CGICICS1 is invoked, passing control
into its OPEN section, where it issues
an IDENT to XPCC with TOAP-
PL=CICSCGI1.

6. Now back at the CICS side CICSCGI1
is active and waiting. It had already
performed an XPCC IDENT, with its
own unique APPL name and used the
p a rameter “ TOAPPL=ANY”. It exe c u t e d
a CONNECT re q u e s t , a l l owing incoming
connections to occur, and was waiting
for an outside program to connect to
CICSCGI1. When CGICICS1 issued
a CONNECT, the system set the
C I CSCGI1 IJBXCECB posting bit,
and CICSCGI1 “woke up” and
a ck n ow l e d ged the connection by
i s s uing a RECEIVE. Now CICSCGI1
waits for data to come from the outside
program and into it’s receiving buffer.

7. CGICICS1, upon receiving acknowl-
e d gement from XPCC that the
connection succeeded, issues a SENDR
of 8 bytes of dat a , wh i ch had been
c o nve rted to “10/12/95”. It then waits fo r
a response against the RECEIVE ECB.

8. CICSCGI1 wakes up, receives the data,
and performs a specific process. In our
example, it verifies the date. This obvi-
ously should be expanded to perfor m
a dat abase query, but I’ll leave that type
of logic up to you!

This is all that it takes
to have a web page

driven by your transaction
processor — two simple

programs that use
a VSE interface that have been

around for quite some time.

9. CICSCGI1 builds a response and issues
a SEND. Since CICSCGI1 did what
it was designed to do, it issues a DIS-
CONN, which is queued.

10. CGICICS1 wakes up, accepts the
response from CICSCGI1, and builds
a series of HTML commands and text
that are kept in storage. It then returns
control to HTTPD.

11. HTTPD is ready to read some HTML
data, so it passes control back to CGI-
CICS1’s READ section. The CGI
reads the formatted lines from storage
that it built during OPEN processing
and keeps sending them until there are
no more to re a d. Between each READ,
control is passed back to HTTPD,
which accepts the line, sends it back
to the Netscape user, and then passes
control back to the CGI which repeats
the process. When there are no more

lines to send, the CGI signals the
HTTPD via a return code, and passes
control back to the HTTPD.

12. The HTTPD acknowledges the
termination of the CGI and passes
control to CGICICS1’s CLOSE
section. Here it issues an XPCC
DISCONN.

13. CICSCGI1 wakes up and the
disconnection is complete. It then
resets a few fields and issues a
C O NNECT once more, waiting
for another session to occur.

14. CGICICS1 issues a TERMPRG
request, dropping its identity
from XPCC.

This is all that it takes to have a web page
driven by your transaction processor — two
simple programs that use a VSE interface
that have been around for quite some time.
To the user, it’s a seamless process; all they
know is that they enter a command on the
web page and they see data a few moments
later. There is no need for using a VTAM
programming interface, an AIX processor,
or any other stage that can slow down this
process or add significant costs to imple-
menting an online interface.

NaSPA member Leo J. Langevin is a systems programmer
with Connectivity Systems, creators of TCP/IP for VSE.
His life currently revolves around RPC, UDP, NFS and
a lot of other three-letter words. He can be reached
via email at leo@tcpip4vse.com.

©1997 Technical Enterprises, Inc. Reprinted
with permission of Technical Support maga-
zine. For subscription information, email
mbrship@naspa.net or call 414-768-8000,
Ext. 116.

ts

http://www.naspa.net April ‘97 TECHNICAL SUPPORT

