
TECHNICAL SUPPORT JANUARY 1996

It’s hard to believe that this column is
entering its eighth year. Time flies when
you’re having fun! This month, I’ll con-

tinue last month’s topic, which is an attempt
to keep up with IBM’s changes concerning
the UCB, or Unit Control Block. As dis-
cussed last month, the UCB is required to
define an I/O d evice to the MVS system. Th e
UCB contains almost all of the information
necessary for the device to be used in per-
forming I/O requests. (A few device charac-
teristics are stored elsewhere, but they are of
minimal value.) It also records the status of a
physical I/O device as represented by a sub-
channel. With the advent of dynamic device
re c o n fi g u rat i o n , i n t e rnals of the UCB

arrangement in storage have had to ch a n ge,
and UCB searching methods have had to be
modified. Therefore, user programs and ex i t s
wh i ch access UCBs need to ke ep up with this
restructuring. Many of these programs have
stopped functioning properly in the new envi-
ronment, and they need to be fixed.

One good place to find information from
IBM manuals, especially concerning matters
that we dealt with last month, is Chapter 23
of the MVS Au t h o ri zed A s s e m bl e r
P rogramming Guide, wh i ch add re s s e s
“Accessing UCBs.” Another is the Planning,
Installation, and Migration manual for MVS
Version 5. My intent isn’t to rehash the infor-
mation in these manuals, but rather to provide

an increased understanding of some of the
i n t e rnal processes invo l ve d. The ultimat e
result will be that you’ll be better able to fix
your own programs and get a deeper view of
the entire situation.

IBM software planners have provided us
macro interfacing methods to use in this new
UCB environment. We now have to invoke
c e rtain IBM A s s e m bler macros such as
U C B L O O K , U C B S C A N, I O C I N F O, a n d
EDTINFO. No longer can we start at the
beginning of the big block of UCBs in the
nucleus area and chain through them in order.
Instead, we must use this collection of macro
interfaces because the system can now add
and subtract UCBs dynamically.

Keeping up With
the Unit Control Block: Part II

BY SAM GOLOB

M V S T O O L S & T R I C K S

Figure 1: UCB Lookup Table

This is a glimpse at the beginning of the UCB Lookup Table in storage, using the LOOK TSO command, which is a core browser. The LOOK command can be
found on the CBT MVS Utilities Tape, in File 261. This diagram shows the ULUT header, as well as the beginning of the table, which is located at address
0204541C. The table itself consists of 12-byte entries, the last fullword of which is the actual UCB address. For clarity, I’ve marked the beginning of each
table entry with a comma. This table is accessible to non-authorized programs, and can be used to scan UCBs, obtaining the actual UCB Common Segment
address and not a copy of the UCB. This is better than the UCBSCAN service, but it isn’t a documented interface. The last entry in the table is marked by a
halfword of zeroes in the sequence number field. For a description of record layouts in this picture, see Figure 2. To ensure validity, you have to make sure
that the IO Configuration has not changed. For this you may use the IOCINFO macro from SYS1.MACLIB, with the IOCTOKEN keyword.

LOOK COMMAND - DISPLAY VIRTUAL MEMORY DISPLAY ASID= 00BC
ENTER CMD -
LAST CMD - J+8

02045398 >E4D3E4E3 01F50000 00000000 0204541C *>ULUT.5..........*
020453A8 000009F1 000000B8 0000002C 000004D0 *...1............*
020453B8 00000280 0000000D 00000000 000001B0 *................*
020453C8 02190007 04F200E7 00010000 00270000 *.....2.X........*
020453D8 00003BA0 00001DD0 00000EE8 00000774 *...........Y....*
020453E8 000003C0 000001E0 000000F0 00000078 *...........0....*
020453F8 0000003C 00000018 0000000C 0000000C *................*
02045408 00000000 00000000 00000000 00000000 *................*
02045418 00000000 ,00014000 00020000 00EF2168 *......*
02045428 00024000 00030000 00EF21D8 ,00034000 *..Q.. .*
02045438 00040000 00EF2248 ,00044000 00050000 *..........*
02045448 00EF22B8 ,00054000 00060000 00EF2328 *......*
02045458 ,00064000 02120000 00EF2398 ,00104000 *..*
02045468 00080000 00EF2408 ,00114000 00090000 *..........*
02045478 00EF2478 ,00124000 000A0000 00EF24E8 *......Y*
02045488 ,00134000 000B0000 00EF2558 ,00144000 *..*

1= HELP 2= 3= END 4= 5= REPEAT 6=
7= BACKWARD 8= FORWARD 9= HIST BWD 10= HIST FWD 11= 12=

A valid UCB can actually disappear. Yet,
all of the currently valid UCBs must still be
searchable. These macros are now the only
supported IBM search method.

There is another fact to note. UCBs have
“ s eg m e n t s ” and “ ex t e n s i o n s ” of va ri o u s
types. The main part of the UCB is called the
“UCB Common Segment.” The other seg-
ments and “UCB extensions” can be reached
in various ways, once we have access to the
UCB Common Segment. Looking at the
m a c ro IEFUCBOB from SYS1.MAC L I B
will give you specific help. Our discussion
will concern how to access the UCB
Common Segment only. In the past, other
segments were mostly contiguous in storage
with the UCB Common Segment. Today, the
other segments and extensions usually are
nowhere near the location of the Common
Segment. This is another reason why our
s e a rch methods have to be different.

With the help of my friend Gilbert Saint-
flour, I’ve discovered a few of the undocu-
mented internals of how UCB searches now

wo rk. I cannot recommend their direct use,
because IBM reserves the right to change the
interface. N eve rt h e l e s s , k n ow l e d ge of these
m e ch a n i s m s is instructive and illuminating,
and we can profit from seeing more of how
the UCB searches are actually happening.

THE UCB LOOKUP TABLE (ULUT)
Back in the MVS/370 days, UCBs were

scanned using a “lookup table.” This was
a sequentially read table which (eventually)
pointed to all of the UCBs in the system as
you went through it. When MVS/XA arrive d,
c o m p l e t e ly ch a n ging the “ ch a n n e l , p at h ,
device” scheme of device addressing, the
proper UCB scanning method became a call
to a routine, pointed to by an address in the
CVT, CVTUCBSC. This method might still
work for “static” UCBs, but its effectiveness
is no longer to be relied upon.

Now, to implement dynamic UCBs, IBM
has again reverted to a modified version of
the “lookup table” arrangement. IBM has
hidden this arrangement from public view,

calling it through the use of the UCBSCAN
macro. But, the internals of a UCB lookup
are built on this table. Every time a dynamic
d evice re c o n fi g u ration is done, the UCB
Lookup Table (ULUT) gets rebuilt.

On MVS/ESA systems (from release 4.1
through at least release 5.2), the ULUT can
be found in the following way. From the CVT
(Communications Vector Table), which is the
anchor for MVS control blocks, you can look
at the contents of field CVTIXAVL at X’7C’
from the beginning of the CVT. This field
points to the address of the IO Supervisor’s
Communication Area (IOCOM). The address
at displacement X’D0’ from the beginning
of the IOCOM points to the IOS Vector
Table, or IOVT. Finally, the address at 8
bytes from the beginning of the IOVT points
to the ULUT.

You can use a core-browsing program,
such as LOOK, from File 261 of the public
domain CBT MVS Utilities Tap e, to actually
see what this storage looks like. The CBT
Tape, with its many tools, can be obtained
through NaSPA. See Figure 1 for a “LOOK”
at the beginning of the ULUT.

The actual ULUT has two parts: its header
section, and the actual UCB lookup table
e n t ries. See Fi g u re 2 for an attempt
at a DSECT description of the ULUT.
Remember that this is an undocumented
interface.

Gilbert Saint-flour, who wrote the encyclo-
pedic SHOWMVS TSO command (on File
183 of the CBT MVS Tape),uncovered many
details of the ULUT’s structure. He has writ-
ten actual code to use this interface in his
SHOWMVS command. Part of the “UCB”
output from his code is shown in Figure 3.

S H OWMVS was designed to display,
under ISPF or in batch, as much information
about your MVS system as possible. As such,
SHOWMVS is an excellent auditor or sys-
tems programmer tool. Besides its some 30
other displays, its UCB display shows all
online devices in each device class, who has
a dataset most re c e n t ly allocated on the
device, and SMS information (if the device is
SMS-managed).

SHOWMVS, while running under ISPF,
will initiate a subtask that constantly tries to
keep all the displays up-to-date. Because of
t h i s , for the UCB display, actual UCB
addresses are needed to obtain current infor-
mation. UCB copies will not do. Therefore,
S a i n t - flour couldn’t employ the standard
UCBSCAN interfa c e, wh i ch for unauthori ze d
programs, will return only a copy of the UCB
and not the real one. He needed to supply the
address of the real UCB in an unauthorized
environment.

The ULUT 12-byte table entries may
be read sequentially by any program. They
consist of a halfword hex device address,

TECHNICAL SUPPORT JANUARY 1996

Figure 2: Accessing the UCB Lookup Table

This figure shows you how to access the UCB Lookup Table in storage, and describes the ULUT
header and the table entries. This description is courtesy of Gilbert Saint-flour, and comes from
the source code of his SHOWMVS TSO command.

* - - Pointer from IOCOM to IOVT - - - - - - - - - - - - - -
IOCIOVTP EQU IOCOM+X’0D0’,4,C’A’ V(IOVT)
*
* - - Description of the relevant parts of the IOVT - - - -
IOVT DSECT IOS VECTOR TABLE ESA41

DS C’IOVT’
DS H’384’ LENGTH OF IOVT
DS XL2

IOVTULUT DS V(ULUT) UCB LOOK-UP TABLE
DS 3F

IOVTCDA DS V(CDA) CONFIG DATA AREA
*
* - - X’84’ Bytes - - - - - Description of ULUT Header - - -
ULUT DSECT UCB LOOK-UP TABLE ESA41

DS C’ULUT’
DS X’01F5’ ?
DS XL2,XL4 UNUSED

ULUTENTP DS A(ULUENTRY) FIRST LOOK-UP ENTRY
ULUTENTN DS F TOTAL NUMBER OF LOOK-UP ENTRIES
ULUTTAPE DS F NUMBER OF TAPE LOOK-UP ENTRIES
ULUTCOMM DS F NUMBER OF COMM LOOK-UP ENTRIES
ULUTDASD DS F NUMBER OF DASD LOOK-UP ENTRIES
ULUTDISP DS F NUMBER OF DISP LOOK-UP ENTRIES
ULUTUREC DS F NUMBER OF UREC LOOK-UP ENTRIES
ULUTCHAR DS F NUMBER OF CHAR LOOK-UP ENTRIES
ULUTCTCA DS F NUMBER OF CTCA LOOK-UP ENTRIES

ORG ULUT+132
* - - 12 Bytes per entry - Description of ULUT Entries - - -
ULUENTRY DSECT UCB LOOK-UP ENTRY
ULUEDEVN DS H DEVICE NUMBER
ULUEFLGS DS X’4000’ FLAGS
ULUEDYN EQU X’40’ DYNAMIC UCB
ULUESEQN DS X’0001’,XL2 SEQNO
ULUEUCBP DS V(UCBOB) UCB ADDRESS
ULUELEN EQU *-ULUENTRY
*

a halfwo rd of fl ag s , wh e re the X’4000’
bit (indicating a dynamic UCB) is the only
one curre n t ly used, a halfwo rd sequence
number, and an unused halfword. The real
UCB common segment address follows. The
last entry of the table is marked by zeroes
in the sequence number field. Or, it can be
calculated by “length” information found in
the ULUT header. Saint-flour employs the
latter method in SHOWMVS.

I hope this technical glimpse will enlight-
en you and arouse your curi o s i t y.
S H OWMVS source code, i n cluding all
of the methods it uses to obtain system
i n fo rm at i o n , is public-domain. You can
l e a rn a lot from it. This code may be fo u n d
on File 183 of the CBT MVS Tap e. Now
we ’ll finish our discussion with some
p rogram conve rsion hints.

FIXING EXISTING USER PROGRAMS
IBM has classified UCB search methods

into two cl a s s e s : limited methods and ge n e ra l
methods. The idea is that the “ l i m i t e d ”
methods cannot be used to find dynamic
UCBs, just statically defined UCBs. The
“ ge n e ra l ” m e t h o d s , wh i ch are the newe r
ones, supposedly can be used to find all
defined UCBs, optionally including 4-byte
unit add resses and dy n a m i c a l ly defi n e d
UCBs. I might add that there are some older
UCB finding methods which no longer work
at all.

The limited methods mentioned in
Chapter 23 of the Authorized Assembler
P rogramming Guide a re the IOSLOOK
macro for finding a single UCB, and the
UCB scan SERVICE for scanning multiple
UCBs. The UCB scan SERVICE is reached
from the CVT at displacement X’434’. This
points to the entry point add ress of the ro u t i n e
IOSVSUCB. Programs using these methods
(you can see what they’re doing by looking at
their source code) should be converted to use
the UCBLOOK macro to find single UCBs,
and the UCBSCAN MACRO to do a com-
prehensive search. As I said befo re, t h e
UCBSCAN MACRO has a limitation for
non-authorized programs. It will return a
copy of the UCB only, and not the address of
the actual UCB.

For programs which find units by generic
or esoteric unit names (see “MVS/SP System
M o d i fi c at i o n s ,” Chapter 6), the old way (XA
and above) was to use the Unit Verification
Service, module IEFEB4UV (which has 11
different function calls). IBM has provided
the macro EDTINFO to supposedly replace
this service, but the function calls in the
EDTINFO macro don’t exactly match the old
calls that were possible with the IEFEB4UV
routine. A certain amount of ingenuity will be
necessary for some of the calls if EDTINFO
is to obtain the same result.

An example of a program needing this
kind of conversion is the UNITS command
from File 360 of the CBT MVS Tape. UNITS
is a TSO command which will either return
all defined generic and esoteric unit names
alone (this part still works), or will also
return all the unit addresses together with
e a ch ge n e ric name. The latter function doesn’t
wo rk pro p e rly any m o re, because IEFEB4UV
cannot find any dynamic UCBs. IEFEB4UV
comes up empty when asked to display a list
of unit addresses for a given unit name, if
they were all defined as dynamic.

I haven’t fixed the UNITS command yet.
When I do, I’ll try and share it with you.
If you fix something, please send it to the
CBT Tape submission address so you can
share with everyone too. The address may be
obtained from NaSPA, 7044 S. 13th St., Oak
Creek, WI 53154 (414) 768-8000. That’s
how this work gets divided. Everyone bene-
fits because no one individual has to do too
much of the total job.

I’d like to close with a general comment
about IBM publications. You’ll need them
to get more help on this and other topics.
Being one of the largest publ i s h e rs in
the wo rl d, IBM would mu ch rather sell
you manuals on CD-ROM than on paper.
If you have to research a certain topic, such
as UCB lookups, it’s much easier to do
so when you have all the manuals at hand
on your PC.

The MVS Omnibus Collection, available
through your IBM representative, has all of
the MVS manuals you’ll ever need. The
Rainbow Collection has all the “Red Books”
and “Yellow Books” etc., from all of the
systems centers. With them, you’ll be better
able to deal with any problem.

I hope this column has been enlightening.
I’ll see you next month. .

Sam Golob is a senior systems programmer
working in New York City.

ts

TECHNICAL SUPPORT JANUARY 1996

Figure 3: UCB Output From the SHOWMVS TSO Command

This is a sample display of the UCB output from the SHOWMVS TSO command. This command can
display its output using the ISPF BRIF (browse) service, or it can go to a file. SHOWMVS under ISPF
uses an ongoing subtask to update the screen with current values every time ENTER is pressed. The
UCB part of its display is designed to run unauthorized.

DEVICE CLASS: TAPE

UNIT NAMES: 3490 3480 3400-5 CART TAPE
UCBS: 32 (DEFINED) 2 (ON-LINE)

CUA UCBTYP UNITNAME VOLSER STATUS

391 78008080 3480 123456 PRIVATE J=NBQ0001B
NOT-READY

480 78048081 3490 NOT-READY

DEVICE CLASS: DASD

UNIT NAMES: 3390 3380 DISK SYSDA 3350
VIO SYSALLDA

UCBS: 416 (DEFINED) 65 (ON-LINE)

CUA UCBTYP UNITNAME VOLSER STATUS

140 3050200B 3350 SYRESB Resident Private
2C4 3030200E 3380K STD008 SMS SG=STD3380 Enabled 85%
265 3030200F 3390-3 SYS430 Resident Private Allocated

J=MYJOB

©1996 Technical Enterprises, Inc. Reprinted
with permission of Te chnical Support
m aga z i n e. For subscription info rm at i o n , e m a i l
m b rship@naspa.net or call 414-768-8000,
Ext. 116.

